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Abstract

In theories with TeV string scale and sub-millimeter extra dimen-
sions the attractive picture of logarithmic gauge coupling unification
at 1016 GeV is seemingly destroyed. In this paper we argue to the
contrary that logarithmic unification can occur in such theories. The
rationale for unification is no longer that a gauge symmetry is restored
at short distances, but rather that a geometric symmetry is restored
at large distances in the bulk away from our 3-brane. The apparent
‘running’ of the gauge couplings to energies far above the string scale
actually arises from the logarithmic variation of classical fields in (sets
of) two large transverse dimensions. We present a number of N = 2
and N = 1 supersymmetric D-brane constructions illustrating this
picture for unification.
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1 Replacing the Desert with the Bulk

It has recently been realized that the fundamental scales of gravitational and
string physics can be far beneath the conventional energies of 1017 − 1018

GeV. This can be accomplished if n spatial dimensions of size ∼ R are much
larger than the fundamental Planck/string scales ∼ Ms. At distances much
larger than R, the weakness of gravity can be understood from Gauss’ law,
which relates the effective 4d Planck scale to the fundamental scale via

M2
pl ∼ RnM2+n

s (1)

The original motivation was to bring the fundamental scales close to the weak
scale, in order to solve the hierarchy problem [1, 2, 3, 4]. Putting Ms ∼ TeV,
the radius R ranges from ∼ mm for n = 2 to ∼ (10MeV)−1 for n = 6. These
large dimensions are not in conflict with experiment if the SM interactions
are confined to a 3-brane in the extra dimensions.

Perhaps the most surprising aspect of this framework is that, despite its
profound modifications of physics at both sub-millimeter and TeV scales, it is
experimentally viable, non-trivially surviving laboratory, astrophysical and
cosmological constraints [3]. The last year has also seen the growing realiza-
tion that the large space in the extra dimensions replaces the old ultraviolet
desert as the new arena in which to address other outstanding mysteries of
the Standard Model, such as the origin of flavor and absence of FCNC’s [5],
small neutrino masses [6], and proton stability [3, 5, 8]. The dynamics of
the bulk also plays an important role in the early universe cosmology of this
framework[9].

One important and general lesson has been that there are new, intrinsi-
cally higher-dimensional mechanisms for generating small parameters in the
four dimensional theory, the smallness of which are not guaranteed by sym-
metries of the low energy theory. Instead, higher dimensional locality can
guarantee that interactions between fields separated in the extra dimensions
are suppressed. In this way, if symmetries are broken at O(1) on distant
branes, with the breaking transmitted to our brane by massive bulk fields,
the breaking can be exponentially small on our wall [5]. In another context,
this effect helps alleviate the SUSY flavor problem in models of wall to wall
SUSY breaking [7]. As another example, proton decay can be suppressed if
quarks and leptons are slightly ‘split’ in the extra dimensions [8].

In order to go further in making this framework as compelling as the stan-
dard picture with the string scale ∼ 1018 GeV and low-energy supersymmetry
(SUSY) breaking, two important theoretical issues must be addressed:

• Why are the radii of the extra dimensions so large compared to the
string scale?

• What about gauge coupling unification?
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In this paper, we will focus on the issue of gauge coupling unification [10],
and argue that the picture of logarithmic gauge coupling unification† may still
emerge in string theory with a low string scale and large extra dimensions.
As we will see, this provides another illustration of the way in which the bulk
can mimic physics associated with the old Desert. Most of the formal results
we discuss below are well known in the literature on D-brane constructions of
gauge theories [12, 13, 14, 15, 16, 17, 18, 19], although we will be interested
in going beyond the ‘decoupling’ limit. What we wish to point out is the
possible application of these results to phenomenology.

There have recently been a number of papers addressing the possibility of
‘running’ far above the string scale [20, 21, 22]. Running the couplings above
the string scale is however not enough, we need a reason for the couplings
to unify far above the string scale. This is challenging because in string
theory, the couplings usually unify at the string scale. We will argue that
the new rationale for unification far above the string scale can be an enhanced
geometrical symmetry at large distances away from our 3-brane in the bulk.
We also further clarify the conditions under which the couplings can ‘run’
above the string scale in D-brane configurations with N = 2 and N = 1
supersymmetry.

2 Logarithmic ‘Running’ from the Infrared

There are two remarkable features of the usual picture of gauge coupling uni-
fication in supersymmetric extensions of the Standard Model: first that the
couplings unify at all, and second that they unify so close to the String/Planck
scale. Of course, given the precision with which the couplings have been mea-
sured, the near miss of the unification and string scales is usually considered
a problem, but at zeroth order it is remarkable that the naive scales of gauge
and gravitational unification are so close to each other. For the moment,
we will ignore the difference between the GUT and Planck scales, and will
return to this point later.

Of course, we have not actually measured the gauge couplings at energies
approaching the GUT scale; all we know is that the measured strength of
the gauge couplings α−1

i at low energy satisfy, to high accuracy, the relation

α−1
i (TeV) = α−1

0 − bi

2π
log

(

Mpl

TeV

)

. (2)

Can this relationship possibly be reproduced in a theory with a low string
scale Ms ≃ TeV and large extra dimensions? In particular, we wish to
reproduce the picture of logarithmic gauge coupling unification, as opposed

†Approaches to gauge coupling unification with power-law running have been discussed
in [11].
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to power-law unification [10]. Even if power-law running explains why the
couplings unify, it can not explain why the unification appears to happen so
close to the Planck scale. Put another way, suppose that instead of unifying
at ∼ 1016 GeV, the couplings were found to unify at 108 GeV; power-law
running could still accommodate this. The link between the unification scale
and the gravitational scale in Eqn.(2) would then be wholly accidental. We do
not wish to view this link as an accident, and will therefore try to reproduce
Eqn.(2) in the context of theories with large extra dimensions.

Of course naively, once we hit the (low) string scale Ms, we can’t continue
to ‘run’ past the TeV scale using the RGE’s of the 4-dimensional effective field
theory, and there is no source for a UV logarithm of magnitude log(Mpl/Ms).
In particular, scattering experiments performed at

√
s ≫ Ms no longer see

just a gauge theory on our brane decoupled from the full set of string modes
and from the bulk degrees of freedom, so there is no sense in speaking of usual
QFT ‘running’ at these scales. However, the usual Mpl does exist as a physical
scale; it is set by the size of the bulk. In units where Ms = 1, Mpl ∼

√
Vbulk.

So, if the gauge coupling on our brane can have logarithmic sensitivity to
the volume of the bulk, there is a hope that the correct magnitude logarithm
is available. Notice that the source of the logarithm in this picture is an
infrared effect.

Under what conditions can quantities on the brane depend on the size of
the bulk [21]? Clearly, the brane must couple to light fields that can propa-
gate in the bulk in order to have any sensitivity to the volume of the extra
dimensions. Gravity is one model-independent field that must propagate in
all n large extra dimensions. There may be other light fields as well, which
can propagate in some of the large dimensions. Let us collectively refer to
the light bulk fields as φ. Since the branes act as coherent sources for φ, they
set up a φ profile in the bulk which is the same as that of a point source for
φ in the t directions transverse to the source branes that φ propagates in.
The precise nature of the dependence of brane quantities on the volume of
the bulk then depends on the φ propagators in t dimensions: for t > 3, the
Green’s functions fall of as r2−t so there is only power suppressed sensitivity
to Vbulk. For t = 2 the propagator is a logarithm and this is precisely what we
are looking for. Finally, for t = 1 there can be power IR divergences (which
can have interesting physical consequences see e.g. [23]), but which are not
of interest to us here.

We are thus lead to consider theories with light fields which can effectively
propagate in two transverse dimensions. For simplicity, in the rest of this
paper we will assume that there are only two large dimensions, although we
emphasize that this is not a necessity. Our picture is summarized in Fig. 1.

The gauge coupling on our brane (evaluated at the cutoff ∼ Ms) is the
vacuum expectation value of some bulk field smeared out over a region of size
∼ ls = M−1

s around our brane (as a consequence of the non-trivial form-factor
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Act as sources 
for φ

Others

    Us

mm

R

in the bulk
φ   

= exp(φ(us) )

∼
Figure 1: The picture for ‘running’ from the infrared. The gauge coupling on
our brane is determined by the value of a bulk field φ evaluated at the position
of our brane. Other branes in the bulk a distance R >> M−1

s away act as
sources for φ, and if the transverse co-dimension relative to the source brane
is 2, then the value of φ on our brane can be logarithmically sensitive to R.
In principle, this logarithmic profile of φ can mimic field theoretic ‘running’
to an energy scale RM2

s far above the string scale.

of the brane):
α−1(Ms) = e−φ(us). (3)

However, the presence of other branes far away in the bulk can modify the
value of φ evaluated on our brane as compared to the value φ0 asymptotically
far away;

e−φ(us) = e−φ0 − c

2π
log(RMs). (4)

For two extra dimensions, R2Ms ∼ Mpl, so

log(RMs) = log
(

Mpl

Ms

)

, (5)

and therefore the correct magnitude logarithm between the weak and grav-
itational scales is indeed present in the theory. In fact, for two large extra
dimensions, the phenomenological constraints are tight enough to force Ms

at least up to ∼ 50 TeV. Then, the logarithm log(Mpl/Ms) is closer to the
desired log(MGUT /TeV), although accurate predictions must of course also
then take into account the usual QFT running between MZ and Ms. Another
natural possibility is that the distant branes are not maximally removed from
us in the extra dimensions, so that R is somewhat smaller.

Note that we are not restricted to a total of n = 2 large dimensions where
gravity propagates. For instance, suppose we have n = 4 large dimensions,
and we are located at the intersection of two orthogonal 5-branes. Fields
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that live on the 5-brane propagate in effectively 2 large dimensions and can
vary logarithmically. If the profiles on the two 5-branes are identical we can
expect to obtain a logarithm 2× log(RMs) ∼log(MP l/Ms), where we have
used M2

P l ∼ R4M6
s . Clearly this idea generalizes to n = 6 extra dimensions

as well.
The fact of logarithmic variation is not enough however. In order to

reproduce the correct ‘running’ of the gauge coupling, the coefficient c in
Eqn.(5) must equal the β function coefficient of the gauge theory localized
on our brane. At first sight, such an equality seems unlikely. After all, c
is determined by the way in which the distant branes couple to the light
bulk fields; why should this be related to the β function of the gauge group
localized on our wall? This seems to require a miracle.

3 IR ‘running’ from N = 2 D-brane construc-

tions

Precisely such a ‘miracle’ is, however, well known to occur in stringy brane
constructions of gauge theories with 8 supercharges. A simple example is
provided by the gauge theories living on D3 branes probing the geometry of
parallel D7/O7 configurations [16]. (See Fig. 2) Let the D7/O7 planes fill out
the 1,..,7 directions and the D3 brane fill out 1,..,3, and define w = x8 + ix9

labeling the space transverse to the 7 branes. Specifically, put an O7− plane
at w = 0, and place 4 D7 branes at wi (i = 1, .., 4). With 4 D7’s, the total RR
charge and tension of the D7/O7 branes cancel, so that for |w| → ∞, all the
bulk fields approach constant asymptotic values; in particular the complex
coupling τ = a + ie−φ of the type IIB string approaches ie−φ(∞) at infinity.
Now, put a single D3 brane at w. This configuration leaves 8 supercharges
invariant, and the resulting gauge theory living on the D3 brane is N = 2 in
four dimensions. When all the branes sit on top of each other, the resulting
gauge theory living on the D3 brane is an Sp(1) = SU(2), N = 2 gauge
theory, with the vector multiplet coming from the 3-3 strings and 4 massless
hypermultiplets from the 3-7 strings. This theory is conformal; the one loop
beta function coefficient is b = 0. This statement has a counterpart from
the long-distance gravity point of view: with wi = 0 all the RR charges
and tensions of the branes cancel against the orientifold, so that there is no
variation of the bulk fields in transverse space. Now suppose we move f of the
D7 branes very far away, i.e. |wi| = R ≫ ls. The resulting gauge theory now
has (4 − f) hypermultiplets and beta function b = f . Now the tensions and
RR charges no longer cancel locally, and there will some variation of the light
bulk fields, although of course asymptotically for |w| ≫ R the fields approach
their fixed values at infinity. It is straightforward to calculate the profile for
τ set up by this configuration of 7 branes. We are in fact only interested in
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Figure 2: An N = 2 SUSY example where the bulk SUGRA equations re-
produce the (3+1)-d QFT holomorphic gauge coupling running on a probe
D3 brane located at w. Source D7 branes are located at positions wi in the
w = x8 + ix9 plane, and an O7− orientifold plane is located at w = 0. At
long distances ≫ R the total RR charge and tension of these D7/O7 branes
cancel and there is no variation in the bulk fields. In this figure we have
moved f = 3 of the D7 branes far away from the D3 and O7 brane, and so
from the D3-brane gauge theory perspective 3 N = 2 hypermultiplets gain a
large mass m = RM2

s .

the long-distance behavior away from the branes (i.e. only the logarithms),
so the full F theory computation [24] is not needed for our purposes. The
result is find‡

τ(w) = τ(∞) +
i

2π

(

4
∑

i=1

log(w − wi) − 4 log(w)

)

. (6)

This in fact directly follows from the fact that the seven branes act as vortex
solutions for the axion a = ℜ(τ). This result precisely matches what we
expect for the field theory running of the gauge theory with hypermultiplets
of mass wiM

2
s . The amazing thing of course is that this result of the long-

distance gravity theory (which is valid for |wi| ≫ ls) reproduces the naive
extrapolation of the field theory running, despite the fact that the field theory
description is valid only for |wi| ≪ ls.

Why does this happen? How can a classical supergravity calculation re-
produce the (quantum) running in a gauge theory? That classical gravity

‡From the full F -theory result the non-perturbative correction to this result can easily
be extracted. They are negligibly small for a theory that has fundamental coupling of
order the usual GUT coupling.
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effects are equivalent to quantum gauge theory effects is a consequence of
closed/open string duality in string theory: The world-sheet that represents
a tree-level closed string exchange between the well separated branes can
also be interpreted, via a re-labeling of ξ1 and ξ2 on the string worldsheet,
as a 1-loop open string diagram of states on the branes that correspond to
strings stretched between the branes. This is illustrated in Fig. 3. However,
this alone is not enough to explain our miracle. At long distances, the tree-
level closed string diagram is indeed well approximated by supergravity, but
closed/open duality only tells us that this is equal to the full one-loop open
string calculation, which sums both the lowest string excitations (which are
the field-theory degrees of freedom) as well as all the massive open string
excitations whose mass depends on Ms. In order for the field theory and
gravity calculations to agree, it must be that sum over massive string exci-
tations gives no corrections to τ . In the case of theories where the lightest
stretched string states preserve 8 supercharges, this is in fact guaranteed by
BPS considerations [16, 22]. The lightest states are BPS states with mass
and (NS-NS) charge both linearly increasing with the string length (M = Q).
The supersymmetry multiplets that these BPS states fill-out are N = 2 rep-
resentations, while the excited strings with oscillator contributions to their
mass are not BPS (M > Q) and group themselves into N = 4 multiplets,
and therefore do not correct τ .

Notice that it is crucial here that the field theory is superconformal at
the origin of moduli space |wi| = 0, and that moving the branes away to
non-zero |wi| is a soft breaking of the superconformal symmetry: The heavy
hypermultiplets of mass |wi|M2

s act as regulators for the low energy field
theory, and the field theory is finite by itself. Ordinarily, low-energy field
theory computations have logarithmic divergences which are cutoff by the
softness of string theory at the string scale. If we are able to ignore string
oscillators, it had better be that the field theory yields finite answers by itself.

The expression Eqn.(6) is valid when the two transverse dimensions, x8,9

to the D7/O7 planes are non-compact. For realistic models we are interested
in compactifying the two transverse dimensions with a large size R in order to
reproduce the usual 1/r2 law for gravity at long distances, so let us consider
what happens with this model when the two transverse dimensions to the 7
branes are compactified on a large torus with equal radii R. First note there
is no obstruction to compactification since the total RR charge and tensions
of the 7 branes cancel. For simplicity, we put the D3 brane at the origin, the
O7 at w = wO and the D7’s at w = wDi. We can enforce periodic boundary
conditions by including (same sign) image charges for the O7 (D7i)’s located
at (m + in)R + wO(Di) with m, n integers. It is then important to check that
the effect of these image charges is a small perturbation on top of what we
have seen in the non-compact limit. This must be the case as long as the
O7/D7′s are sufficiently far from the “edges” of the torus, i.e. as long as
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2string state m = RM

ξ 1

ξ 2

‘source’ brane‘our’ brane

1-loop diagram for massive stretched open

closed string tree exchange well approx. by SUGRA when R>>l str

Figure 3: The general picture describing the duality between 1-loop open
string and tree-level closed string diagrams. The worldsheet coordinates for
the string are ξ1 and ξ2. If ξ1 is taken to be the worldsheet ‘time’ coordinate
then this diagram represents the exchange of a closed string state between
our brane and a ‘source’ brane in the bulk. If the separation R of the branes
is large Rℓs ≫ 1, then this amplitude is well approximated by the (classical)
bulk supergravity solution in the presence of the brane source. On the other
hand, if ξ2 is taken to be the worldsheet ‘time’ coordinate then this diagram
represents the 1-loop contribution of a massive stretched open-string to the 2-
point function of our brane-localized theory. In special cases (described in the
text) only the zero-mode stretched string state contributes, the higher string
oscillator states canceling, and the usual QFT beta-function is reproduced.
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|wO|/R, |wDi|/R ≪ 1. Indeed, the exact expression for τ evaluated at the
position of the D3 brane is

τ(0) = τ(∞) +
i

2π

∞
∑

m,n=−∞

4
∑

i=1

log

(

m + in + wDi

R

m + in + wO

R

)

. (7)

The term with m = n = 0 is just the piece we already have in the non-
compact limit, and it is trivial to Taylor expand the remaining contribution
to find the shift

δτ(0) = c
∑

i





(

|wDi|
R

)4

−
(

wO

R

)4


 (8)

where c is an O(1) numerical factor. We expect this correction to hold in any
realization of our logarithmic “running” scenario, since it takes into account
the correct Green function on the compact space. Already, for (|w|/R) ∼ 1/3
this correction is beneath the percent level and will be irrelevant in any
potentially realistic model given the accuracy to which the SM couplings
have been measured.

It is also instructive to consider what happens when only one of the
transverse dimensions is compactified on a circle of radius r. At distances
|w| ≫ r, there is effectively only one transverse dimension, and τ varies
linearly with |w| rather than logarithmically. This is simply reflected in
the field theory: The 3-7 strings can wind n times around the compact
dimension, giving a tower of (BPS) winding states with masses n/r which
are fundamental hypermultiplets under the SU(2) gauge group. Including
the effect of this entire tower of states changes logarithmic to power-law
running in the field theory. Of course in field theory we must include in
the running not only these states, but all states lighter than the ‘UV cutoff’
|w|M2

s . However, as before the excited string oscillator states are non-BPS
and form themselves in effective N = 4 SUSY multiplets. In the cases where
the string excitations make no contribution to coupling renormalization, we
can do a field theory calculation, keeping all the field theory states lighter
than the field theory UV cutoff, despite the fact that this cutoff is far above
the string scale.

This example illustrates that it is indeed possible that field theory “run-
ning” into the UV is exactly reproduced by logarithmic variation of bulk
fields in the IR. However, there are two important issues to be addressed in
moving towards more realistic theories:

• How crucial is N = 2 SUSY? Are there N = 1 models with the same
property?

• It is not enough to reproduce the correct ‘running’ for the couplings;
what is the rationale for the gauge couplings to appear to unify at Mpl?
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This latter question is quite serious and we will address it first. It is
easy to see that the usual argument for unification in string theory must be
lost in the picture we are discussing. The standard reason for unification
is that there is a single field, the dilaton, whose vacuum expectation value
sets the gauge couplings for all gauge group factors, enforcing equal gauge
couplings at the string scale. In the present case with a low string scale, if
the gauge couplings of the SM gauge groups living on our wall are set by
a single bulk field φ, then no matter what other sources φ has, the gauge
couplings are still guaranteed to unify at the string scale, which is now ∼
TeV! Moreover, we can’t have ‘our’ branes, on which the SM gauge group is
realized, significantly separated from each other in the bulk since this would
lead to e.g., very massive (3, 2) states under SU(3)×SU(2). Thus we cannot
realize different values of the low-energy SM gauge couplings from evaluating
a single bulk field at different points in the bulk. An obvious way around this
is if the different gauge couplings αi are given by the vacuum expectation
values of different bulk fields φi. But then why should we have unification?
Clearly a new rationale is needed.

4 Unification from Symmetries in the Bulk

We now give an example of N = 2 theories where the gauge couplings unify
and the rationale for unification is a geometric symmetry of the brane configu-
ration in the far IR. These are based on the Hanany-Witten [13] construction
of N = 2 theories which we briefly review here. In the simplest set up there
are two NS5 branes, filling out 12345 and localized at x7,8,9 = 0, with one
located at x6 = 0 and the other at x6 = l. Suspended between them are Nc

D4 branes located at x4,5,7,8,9 = 0 filling out 123 and spanning x6 = 0 → l.
In the absence of the NS5 branes, the gauge theory living on the D4 branes
is a (4+1)-d gauge theory with 16 supercharges. The boundary conditions
of the D4 branes ending on the NS5 branes reduces the SUSY down to 8
supercharges, and at long distances compared to l the theory is a (3+1)-d
gauge theory with 8 supercharges, which is an N = 2 U(Nc) gauge theory.
The (3+1)-d gauge coupling is given by reduction from (4+1) to (3+1)-d

α−1
(3+1) = lα−1

(4+1) = lMsαs
−1. (9)

Moving the positions of the D4’s corresponds to moving along the Coulomb
branch (adjoint Higgsing) of the U(Nc) gauge theory. Further suspending
semi-infinite Nf D4 branes off the NS5 branes, located at x4 + ix5 = vi, i =
1, .., Nf adds Nf hypermultiplets of mass M2

s |vi|, coming from the 4-4 strings
stretching between the semi-infinite and finite length D4 branes.

The D4 branes ending on the NS5 branes are under tension and therefore
bend the NS5 brane in the x6 direction. The end-points of the D4 branes are
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three dimensional, and so are of co-dimension 2 inside the NS5’s. Therefore
we expect that this bending will be logarithmic. It is well known [14] that
this bending encodes the β function of the N = 2 gauge theory. To see this
physically, imagine first attaching Nc semi-infinite D4 branes on either side
of the NS5 branes x4,5 = 0 (similar to the picture of Fig. 4). Clearly, the force
on each of the NS5 branes cancel from the left and the right, and so there is
no bending of the NS5 branes: Let us denote the distance between the NS5
branes as l0. Reflecting the non-bending NS5’s, we have an N = 2 U(Nc)
gauge theory with 2Nc hypermultiplets, which is conformal. Now consider
moving some of the semi-infinite D4’s away from the origin; for simplicity
move all Nc of the ones on the left and Nc − Nf of the ones on the right a
distance R away. The resulting gauge theory near x4,5 = 0 is N = 2 U(Nc)
with Nf hypermultiplets, which has one-loop beta function b0 = (2Nc −Nf ).
Now that the forces on the NS5’s no longer cancel locally, they will bend.
However, at distances ≫ R, the net bending will cancel and they will still
asymptote to being parallel and a distance l0 apart. We can then sensibly
ask for the distance l between the NS5 branes, at x4,5 = 0, as a function of
the asymptotic distance l0 and R; the answer is

l = l0 −
(2Nc − Nf)αs

2π
log (R/ls) . (10)

It is easy to understand the sign and dependence on Nc, Nf in the above: the
D4’s pull on the NS5’s, so they are closer to each other at x4,5 = 0; the D4’s
between the NS5’s pull each of them inward by an amount proportional to
Nc while the D4’s on the outside pull outward by Nf , so that the net pull is
proportional to (2Nc − Nf ).

Using the relation Eqn.(9), we find that the value of the gauge coupling
of the gauge theory at x4,5 = 0 varies with R as

α−1
(3+1) = α−1

s − (2Nc − Nf)

2π
log (R/ls) . (11)

This is precisely the ‘running’ expected only keeping field theory states.
In QFT language, at energies far above RM2

s the theory is conformal and the
coupling doesn’t run, its value being given by αs. Beneath the mass of the
(2Nc − Nf) hypermultiplets, the theory runs exactly according to Eqn.(11).
Once again, the (2Nc − Nf ) D4 branes that have been moved away act as
‘regulators’ of the theory left behind. From the long-distance, gravity point
of view they serve as ‘IR regulators’, canceling the variation of bulk fields so
they asymptote to well-defined values in the deep IR. From the gauge theory
point of view, the low-energy theory has been embedded inside a softly broken
superconformal theory; the massive hypermultiplets coming from the distant
D4’s regulate the low-energy theory, and the superconformality of the full
theory ensure a well-defined value of the gauge coupling in the deep UV.
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Figure 4: A toy N = 2 theory with unification far above the string scale
based on the Hanany-Witten set-up. The thick lines are NS5 branes and the
thin ones are D4 branes. The 6 direction is compactified on a circle, which
we indicate by periodically repeating the configuration. The gauge group is
SU(3)3 with hypermultiplets transforming as (3, 3̄, 1) + (1, 3, 3̄) + (3̄, 1, 3).
The NS5’s are equally spaced so the three gauge couplings are identical. The
forces on the NS5’s due to the D4’s cancel locally so there is no bending of
the NS5’s.

We can now present our toy example of unification. We will compactify
the x6 direction on a circle §, and place 3 NS5’s equally spaced on the circle as
in Fig. 4. In the supersymmetric limit, there are no forces between the NS5’s
and we could place them with any relative spacing we please, but for the
moment let us place them in the most symmetrical arrangement. Between
each of the NS5’s suspend 3 D4 branes. The theory is then N = 2 SU(3)3

with hypermultiplets in the (3, 3̄, 1) + (1, 3, 3̄) + (3̄, 1, 3) representation. This
particle content is an N = 2 version of ‘trinification’. In the limit where all
the D4’s sit at x4,5 = 0, all the forces on the NS5 cancel and they do not
bend. Again, reflecting this, the N = 2 theory is conformal. Let us now
take one of the D4’s between NS52,3 and two between NS53,1 a distance R
away as in Fig. 5. The resulting gauge theory at the origin has gauge group
SU(3)×SU(2)×U(1), with hypermultiplets in the (3, 2, 0)+(3̄, 1, ∗)+(1, 2, ∗)
representation. This is qualitatively similar to a one generation MSSM, ex-
cept the hypercharges are wrong and the theory is N=2. Nevertheless, we
can ask about gauge coupling unification in this toy world. The forces on the
NS5’s no longer cancel locally so they will bend locally as in Fig. 5. How-

§For simplicity, we will not compactify any of the other spatial dimensions. Even
though we do not recover 4D gravity at long distances, doing this allows us to most clearly
illustrate the picture for gauge coupling unification far above the string scale.
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Figure 5: Moving some of the D4’s a distance R away leaves an SU(3) ×
SU(2)×U(1) gauge group living on the remaining branes. The forces on the
NS5’s no longer cancel locally and they bend. We see that l3 < l2 < l1, so
g3 > g2 > g1.

ever, at distances much larger than R, the splitting between the D4’s can
not be resolved and the NS5’s flatten out and continue to be equally spaced.
We know that the bending precisely reproduces the field theory running in
these models. The only question is what the deep UV value is for the gauge
coupling. Because we have arranged for the NS5’s to be equally spaced in
the deep IR, in the field theory this corresponds to the boundary condition
that the couplings unify at the large mass scale RM2

s . The rationale for uni-
fication at a scale far above the string scale is a geometrical Z3 symmetry of
the brane configuration at large distances. While the usual picture for unifi-
cation invokes enhanced symmetries at short distances, here the rationale for
unification is an enhanced geometrical symmetry of the brane construction
viewed from large distances in the bulk (Fig. 6).

Notice that this model realizes the general possibility we mentioned earlier
for evading the equality of gauge couplings at the string scale. At distances
larger than the radius of the S1, we only see that we have the two large
dimensions x4,5. The three gauge couplings of SU(3) × SU(2) × U(1) are
then indeed given by the values of three bulk fields corresponding to the
inter-NS5 brane distances, and this interpretation gives us the geometric
rationale for unification.

But why should the NS5 branes be placed symmetrically around the cir-
cle? We can not fully answer this question until we address SUSY breaking;
nevertheless, we can at least state some reasonable dynamical assumptions
that generate the desired outcome. If SUSY is broken only on some branes,
then the bulk will still be highly supersymmetric, and we can expect the
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Figure 6: The configuration of Fig. 5 viewed from afar. The NS5’s flatten
out and the Z3 geometrical symmetry of the original brane configuration is
regained at large distances in the bulk. This provides a rationale for the
apparent unification of the gauge couplings at a scale much higher than the
string scale

brane bending to remain unchanged. On the other hand, there will now be
forces between the NS5 branes, and the Z3 symmetric configuration will at
least be an extremum of the energy; we need this extremum to be a local
minimum.

It is amusing to think about experimental signatures of this toy model.
Since the gauge theory becomes effectively (4+1)-d at energies above l−1,there
will be KK excitations at this scale. But then why do we continue to get log
(as opposed to power law) running? The reason is that the 16 supercharges
of the theory on the D4’s was broken to 8 supercharges by the boundary
conditions imposed by their ending on the NS5’s. In (3+1)-d language, we
started with an N = 4 particle content which in N = 2 language consists of
a vector multiplet V and a hypermultiplet Φ both in the adjoint representa-
tion. The boundary conditions are free for the V and fixed for Φ at x6 = 0, l.
This projects out the zero mode of Φ but leaves that of V , so the massless
spectrum is N = 2. But the massive modes group themselves into N = 4
multiplets, and therefore make no contribution to the β function. There are
three different KK towers for each of the SU(3), SU(2) and U(1) factors,
corresponding to the three strips between the NS5’s. The KK masses then
come in the ratio

M3 : M2 : M1 = α3 : α2 : α1, (12)

so this would be a “smoking-gun” signature of this framework for unification
in this world.
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5 N = 1 models

We now turn to the issue of whether N = 1 models can be constructed
where the field-theory running is reproduced by supergravity. We do not
have a general set of rules for when this is guaranteed to happen, but will
present a class of models which work. First of all, a good place to look are
brane constructions of N = 1 theories which are superconformal at the origin
of moduli space. The superconformality guarantees that the field theory
calculation of the running can be finite all by itself without requiring string
theory to cut it off, so that there is at least a hope that string oscillators
can be ignored in the tree-level close string/1-loop open string comparison.
Perhaps the simplest possibility is to consider orbifolds of N = 2 models.
Indeed, orbifolds of the Hanany-Witten construction were considered in [15].
Defining u = x4 + ix5 and v = x8 + ix9; the ZM orbifold considered in [15]
is u → αu, v → α−1v with αM = 1. Suspending NM D4’s between the
NS5’s, the action of the orbifold group ZM on the Chan-Paton indices of the
U(NM) gauge group is

λa → γ−1λaγ, γ = diag
(

1N , α1N , · · · , αM−11N

)

. (13)

The resulting theory is an N = 1 SU(N)M theory with chiral content given
by (N, N̄, 1, · · · , 1) + cyclic permutations.

By lifting this configuration into M theory, Ref.[15] demonstrates explic-
itly that the bending of the NS5 branes reproduces the beta function of the
N = 1 theory. We wish to observe that this can be seen on general grounds
and suggests a perhaps wide class of N = 1 models with this feature. We
find it convenient again to add ‘regulator’ branes to the system to ensure zero
asymptotic bending in the IR and finiteness in the UV. In the present case,
we add NM semi-infinite D4’s on each of the NS5 branes and then orbifold.
The resulting N = 1 theory is an orbifold of the finite N = 2 SU(NM)
theory with 2NM hypermultiplets, and is easily seen to be a superconformal
N = 1 theory. Now, we move some of the regulator branes away from u = 0,
which takes them away from the orbifold fixed point (of course we have to
move D4’s and their images together, so they move in groups of M). We can
now ask what profile for the bulk fields is set up by these regulator branes.
The crucial point is that since they are away from the fixed point, they can’t
act as sources for twisted sector fields, and therefore they set up exactly the
same profile as the same configuration before the orbifold! Therefore, the
‘supergravity’ part of the calculation is unmodified. On the other hand, as
is now well known [18], all correlation functions of an orbifolded field theory
(the ‘daughter’ theory) agree with the theory before orbifolding (the ‘par-
ent’ theory), at the level of planar diagrams, up to a re-scaling by a factor
of |Γ|−L where L is the number of loops, and |Γ| = M is the order of the
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discrete orbifold group. This result, together with the fact that the ‘super-
gravity’ calculation is unaltered by the orbifold, allows the resulting N = 1
theory to inherit the equality between ‘supergravity’ bending and field-theory
running from the N = 2 theory, as we now show. (We also note that in the
case where not all branes can be moved away from the fixed point, the gauge
theory running is still reproduced, at least in the N = 2 case [19], by the
bulk supergravity equations.)

First of all, the gauge couplings g2
p and g2

d of the parent and daughter
theories are related as

M

g2
d

=
1

g2
p

. (14)

Note that this implies that the ‘tHooft couplings of the theories are identical.
This can most easily be seen by moving the N branes (together with all the
M images) away from the origin. Since all branes are away from the fixed
point, there is no local way to distinguish the daughter theory from the parent
theory with the same brane configuration. From the daughter theory point
of view, the SU(N)M group has been Higgsed to a single SU(N), with gauge
coupling 1/g2

1 = M/g2
d. The same gauge configuration in the parent theory

Higgses SU(NM) to SU(N)M with gauge coupling 1/g2
2 = 1/g2

p. But the
gauge coupling of each factor of this SU(N)M must be exactly the same as
that of the SU(N) of the daughter theory, where the M factors of the group
in the parent theory are interpreted as mirrors of the daughter gauge group.
Therefore, we must have 1/g2

1 = 1/g2
2 and Eqn.(14) follows.

Now, we know that the gauge coupling of the parent theory ‘runs’ from
the IR according to the beta function bp

1

g2
p

=
1

g2
p(0)

− bp

8π2
log(R/ls). (15)

Since the bending is unchanged by the orbifold, we also know for the daughter
theory that

M

g2
d

=
M

g2
d(0)

− bp

8π2
log(R/ls). (16)

In order for this to reproduce the field theory ‘running’ for the daughter
theory it must be that the beta function coefficient of the daughter theory
bd satisfies bp = Mbd. But this is an immediate consequence of the orbifold
inheritance results quoted above. In particular, the one-loop beta function
diagrams are all planar, so the beta function of each each factor of the daugh-
ter theory bd is related to the parent theory bp as

bd =
bp

M
(17)

This is trivial to see in the present case: bp = 2NM and bd = 2N .

16



This suggests that the correct ‘running’ can be obtained for a wide class
of N = 1 theories. One starts with N = 2 models where supergravity is
guaranteed to reproduce the field theory “running”, and orbifolds the theory
down to N = 1. If the regulator branes are moved away from the orbifold
fixed point, the N = 1 theory can inherit the equality between supergravity
and field theory running from the N = 2 theory.

Another possibility is that the supergravity does not reproduce the N = 1
running, but that the mismatch comes in ‘complete SU(5) multiplets’, that
is, the mismatch is identical for α−1

1,2,3. This would preserve gauge coupling
unification. It is easy to construct a toy example that works in this way.
Going back to the Hanany-Witten set up, we can add Nf parallel D6 branes
between the NS5 branes. When the D6’s fill out 123789, N = 2 SUSY is still
preserved and the 4-6 strings give Nf hypermultiplets. The bending of the
NS5 branes still reproduces the β-function of the field theory, the contribution
of the Nf hypermultiplets in the supergravity description being understood
as follows: The D6 branes are the largest objects in the system and set up
a gravity and dilaton profile in the 456 space transverse to them, where the
D6’s sit at the origin. In this transverse space, the NS5’s fill out a plane
45, and extremizing the NS5 brane action in the gravity/dilaton profile of
the D6 brane causes logarithmic bending in the 6 direction, with the correct
coefficient to equal the −Nf contribution of Nf hypermultiplets.

Now consider rotating the D6’s so they are parallel to the NS5 branes, i.e.
they fill out 123457. It is simple to check the conditions on the supercharges
imposed by this brane configuration, and discover that only N = 1 SUSY is
left unbroken. The particle content is still the same as in the N = 2 theory,
but the superpotential interaction between the adjoint in the vector multiplet
and the hypermultiplets H̄ΦH is switched off, so the interactions only respect
N = 1. In this configuration, however, the D6 branes do not bend the NS5’s
in the 6 direction; they are parallel to them! The Nc D4’s ending on the
NS5’s still bend them inward by 2Nc, so the bending is proportional to 2Nc

while the β function is still (2Nc −Nf). Therefore the supergravity does not
reproduce the field theory running in this case. However consider inserting
Nf of these D6’s between each pair of NS5’s in our trinification model from
the previous section.¶ Now each of the SU(3), SU(2) and U(1) factors have
Nf extra hypermultiplets added, whose contribution is not reflected in the
NS5 bending. But the extra contribution to the field theory beta function is
Nf for all gauge group factors, so unification is preserved.

¶Note that in the N = 2 configuration the D6’s can not be placed between the NS5’s
on a compact S1 of a fixed radius, exactly because of the bending they induce. In our
N = 1 set-up, however, they cause no bending and can be included.
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6 Physical couplings and threshold corrections

So far we have focused on the analogue of 1-loop “running” of the gauge
coupling coming from the IR. What about higher-order corrections?

What we have actually been computing is the logarithmically enhanced
contribution to the holomorphic coupling of the low energy SUSY gauge
theory. Of course, the precise way in which the brane “thickness” regulates
the value of the gauge coupling on our brane gives a threshold correction in
matching to the low-energy theory. However, all of these corrections are due
to local physics close to the brane, where the string coupling is weak, and are
not logarithmically enhanced by the size of the bulk. We do not expect them
to be more important than e.g. the (unknown but small) MSSM threshold
corrections. Therefore, our 1-loop expression is an excellent approximation to
the holomorphic gauge couplings of the low-energy theory. Of course, these
are not the physical gauge couplings; the physical couplings are determined
by re-scaling all the fields of the low-energy theory to go back to canonical
normalization [26], and are given by the Shifman-Vainshtein relation

1

g2
ph

+
2t2(A)

8π2
log (gph) =

1

g2
h

−
∑

i

2t2(i)

8π2
log (Zi) , (18)

where Zi is the wavefunction renormalization of the i’th matter multiplet
in the low-energy theory. In field theory, all the higher loop running of the
coupling is contained in the log(gph) and log(Zi) terms in the above, giving
the NSVZ β-function. In our case, we expect that the Zi are themselves
determined by the vacuum expectation value of a logarithmically varying
bulk field so that

Zi = 1 − ci

8π2
log (R/ls) , (19)

with ci some constants coming from the supergravity solution. We do not
know whether any miracles can guarantee that this expression reproduces the
gauge theory result, although since Z is not holomorphic this seems doubt-
ful. Nevertheless, because only log(Zi) enters in the physical coupling, these
corrections should be of the same order of magnitude as two-loop running in
the field theory, and are also small.

7 Discussion

We have seen that the correct ‘field-theoretic running’ of the couplings may
naturally be reproduced by the logarithmic variation of light fields in the deep
IR. However, a new rationale for unification near the 4-d gravitational scale is
required. We presented a toy model where unification is linked to a geometric
symmetry of the brane configuration in the deep IR. This correspondence
between UV effects in the gauge theory and IR effects in the gravitational
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theory gives a fascinating re-interpretation of what we learn from RGE’s. We
normally think that we are limited to doing experiments at low energies, but
the renormalization group allows us to extrapolate the couplings to much
shorter distances, providing an indirect window to this remote realm. Our
toy examples illustrate that sometimes this interpretation can be misleading.
The fundamental short distance need not be remote at all, it could even
be as low as a few TeV. On the other hand, we are then confined to a
3-brane, and can not probe large distances in the transverse space away
from our brane. In our examples, the RGE’s, reinterpreted as the result
of logarithmic variation of bulk fields, provide an indirect window into this
new remote realm a millimeter removed in the extra dimensions. In the
old picture, the world look asymmetrical at large distances but symmetries
emerge at short distances. In the new picture, the world close to our brane
looks asymmetrical but symmetries emerge when we look at large distances
in the bulk.

We comment in passing that the ideas presented here can also be used
to provide controllable power-law unification with only one transverse di-
mension. The UV sensitivity of usual power-law unification becomes IR
sensitivity in this picture, but since the IR physics is well-determined in any
given model this can be controlled.

Finally, in asymptotically free gauge theories, we are used to generating
energy scales much smaller than the UV cutoff by dimensional transmuta-
tion. The gauge coupling becomes strong at a scale Λ exponentially smaller
than the cutoff and interesting physics happens. In the standard theories
with large string scale, we expect that some SUSY gauge theory goes strong
and triggers SUSY breaking far beneath the string scale, which stabilizes an
exponentially large hierarchy between the electroweak and string scale. A
similar phenomenon can in principle occur with low string scale and large
extra dimensions. Suppose that there is a non-asymptotically free gauge
group living on some collection of branes. Then, the bulk field setting the
gauge coupling becomes strong exponentially far away in the bulk. This
“dimensional transmutation in the bulk” naturally generates an IR scale ex-
ponentially larger than the string scale. It is tempting to speculate that
this scale could determine an exponentially large effective compactification
radius. More generally, logarithmic variation of fields in the bulk could force
the theory into strong coupling exponentially far away in the extra dimen-
sions, and interesting physics can happen. If an exponentially large radius
can be generated in this way, we would have a true solution to the hierarchy
problem, just as compelling as the standard picture in generating the various
disparate scales observed in nature.

Acknowledgments: JMR wishes to thank the Stanford University The-
ory Group for their generous hospitality during the main stages of this work,

19



and both SD and JMR thank the Aspen Center for Physics for providing a
rewarding environment during the completion of this work. We would like to
thank Ignatios Antoniadis, Eva Silverstein, and especially Martin Schmaltz,
Matt Strassler and Angel Uranga for useful discussions. NAH is partially
supported by the DOE under grant DE-AC03-76SF00098 and the NSF un-
der grant PHY-95-14797, and JMR is supported in part by the Alfred P.
Sloan Foundation.

References

[1] N. Arkani-Hamed, S. Dimopoulos and G. Dvali, Phys. Lett. B429,
(1998) 263.

[2] I. Antoniadis, N. Arkani-Hamed, S. Dimopoulos and G. Dvali, Phys.
Lett. B436, (1998) 257.

[3] N. Arkani-Hamed, S. Dimopoulos and G. Dvali, hep-ph/9807344.

[4] R. Sundrum, hep-ph/980734;
N. Arkani-Hamed, S. Dimopoulos and J. March-Russell,
hep-th/9809124.

[5] N. Arkani-Hamed and S. Dimopoulos, hep-ph/9811353.

[6] N. Arkani-Hamed, et al, hep-ph/9811448;
Other ideas were suggested by K. Dienes, E. Dudas, T. Gherghetta,
hep-ph/9811428.

[7] L. Randall and R. Sundrum, hep-th/9810155.

[8] N. Arkani-Hamed and M. Schmaltz, hep-ph/9903417.

[9] N. Kaloper, hep-th/9811141;
G. Dvali and S.H-H Tye, hep-ph/9812483;
N. Arkani-Hamed et al, hep-ph/9903224, hep-ph/9903239.

[10] K. Dienes, E. Dudas and T. Gherghetta, Phys. Lett. B436, (1998)
55;Nucl. Phys. B537 (1999) 47;
D. Ghilencea and G. Ross, hep-ph/9809217.

[11] H. Georgi and S. Glashow, Phys. Rev. Lett. 32 (1974) 438;
H. Georgi, H. Quinn and S. Weinberg, Phys. Rev. Lett. 33 (1974) 451;
S. Dimopoulos and H. Georgi, Nucl. Phys. B193 (1981) 150;
S. Dimopoulos, S. Raby and F. Wilczek, Phys. Rev. D24 (1981) 1681.

20

http://suriya.library.cornell.edu/abs/hep-ph/9807344
http://suriya.library.cornell.edu/abs/hep-th/9809124
http://suriya.library.cornell.edu/abs/hep-ph/9811353
http://suriya.library.cornell.edu/abs/hep-ph/9811448
http://suriya.library.cornell.edu/abs/hep-ph/9811428
http://suriya.library.cornell.edu/abs/hep-th/9810155
http://suriya.library.cornell.edu/abs/hep-ph/9903417
http://suriya.library.cornell.edu/abs/hep-th/9811141
http://suriya.library.cornell.edu/abs/hep-ph/9812483
http://suriya.library.cornell.edu/abs/hep-ph/9903224
http://suriya.library.cornell.edu/abs/hep-ph/9903239
http://suriya.library.cornell.edu/abs/hep-ph/9809217


[12] See for example:
J. Polchinski, TASI lectures on D-branes, hep-th/9611050;
C. Bachas, Lectures on D-branes, hep-th/9806199;
A. Giveon and D. Kutasov, Brane dynamics and gauge theory,
hep-th/9802067.

[13] A. Hanany and E. Witten, Nucl. Phys. B492 (1997) 152;
hep-th/9611230.

[14] E. Witten, Nucl. Phys. B500 (1997) 3; Nucl. Phys. B507 (1997) 658.

[15] J. Lykken, E. Poppitz and S. Trivedi, Phys. Lett. B416 (1998) 286,
hep-th/9708134.

[16] M. Douglas and M. Li, hep-th/9604041;
C. Bachas and C. Fabre, Nucl. Phys. B476 (1996) 418.

[17] A. Hanany, M. Strassler and A. Uranga, hep-th/9803086.

[18] S. Kachru and E. Silverstein, Phys. Rev. Lett. 80 (1998) 4855,
hep-th/9802183;
M. Bershadsky, Z. Kakushadze and C. Vafa, Nucl. Phys.
B523 (1998) 59, hep-th/9803076;
M. Bershadsky and A. Johansen, Nucl. Phys. B536 (1998) 141,
hep-th/9803249.

[19] A. Karch, D. Lust and D. Smith, hep-th/9803232.

[20] C. Bachas, hep-ph/9807415.

[21] I. Antoniadis and C. Bachas, hep-th/9812093.

[22] I. Antoniadis, C. Bachas and E. Dudas, hep-th/9906039;
L. E. Ibanez, hep-ph/9905577;
E. Halyo, hep-ph/9905577.

[23] L. Randall and R. Sundrum, hep-ph/9905221, hep-th/9906064;
M. Goberashvili, hep-ph/9812296.

[24] E. Bergshoeff, et al., Nucl. Phys. B470 (1996) 113;
C. Vafa, Nucl. Phys. B469 (1996) 403;
A. Sen, Nucl. Phys. B475 (1996) 562.

[25] I. Antoniadis, Phys. Lett. B246 (1990) 377;
I. Antoniadis and K. Benakli, Phys. Lett. B326 (1994) 69;
I. Antoniadis, K. Benakli and M. Quiros, Phys. Lett. B331 (1994) 313.

[26] M.A. Shifman and A.I. Vainshtein, Nucl. Phys. B359 (1991) 571; N.
Arkani-Hamed and H. Murayama, hep-th/9707133.

21

http://suriya.library.cornell.edu/abs/hep-th/9611050
http://suriya.library.cornell.edu/abs/hep-th/9806199
http://suriya.library.cornell.edu/abs/hep-th/9802067
http://suriya.library.cornell.edu/abs/hep-th/9611230
http://suriya.library.cornell.edu/abs/hep-th/9708134
http://suriya.library.cornell.edu/abs/hep-th/9604041
http://suriya.library.cornell.edu/abs/hep-th/9803086
http://suriya.library.cornell.edu/abs/hep-th/9802183
http://suriya.library.cornell.edu/abs/hep-th/9803076
http://suriya.library.cornell.edu/abs/hep-th/9803249
http://suriya.library.cornell.edu/abs/hep-th/9803232
http://suriya.library.cornell.edu/abs/hep-ph/9807415
http://suriya.library.cornell.edu/abs/hep-th/9812093
http://suriya.library.cornell.edu/abs/hep-th/9906039
http://suriya.library.cornell.edu/abs/hep-ph/9905577
http://suriya.library.cornell.edu/abs/hep-ph/9905577
http://suriya.library.cornell.edu/abs/hep-ph/9905221
http://suriya.library.cornell.edu/abs/hep-th/9906064
http://suriya.library.cornell.edu/abs/hep-ph/9812296
http://suriya.library.cornell.edu/abs/hep-th/9707133

